Advertisements

Mathematics Project Topics

Quadratic Forms With Applications

Quadratic Forms With Applications

Advertisements

Quadratic Forms With Applications

Chapter One

PREAMBLE OF THE STUDY

A quadratic form over a field K (K = R or K = C) in finitely many indeterminate x1,ย .ย .ย .ย ,ย xnย isย aย homogeneousย polynomialย ofย degreeย 2ย inย K[x1,ย .ย .ย .ย ,ย xn], unless it is identically zero. The main property of real quadratic forms in the finite dimensional case is that every real quadratic form is orthogonally sim- ilar (i.e., can be transformed by an orthogonal change of the indeterminates considered as coordinates) to a quadratic form which is the sum of multiples of squares of the indeterminates [16].

Inย factย aย quadraticย formย inย aย finiteย setย ofย indeterminatesย overย K,ย asย aย homoge- neous quadratic polynomial in the indeterminates with coefficients in K, can be studied by means of matrices because any such a quadratic form Q can be expressed as Q(X) = XTย AX, where X is a column vector with theย indetermi- natesย asย elementsย andย Aย aย symmetricย matrixย overย K.ย Thusย itย isย theย quadratic form associated with the symmetric bilinear form defined from Kn Kn ย to K by f (X, Y ) = XTย AYย ; X, Y โˆˆ Knย , and this gives rise to a duality.

Chapter Two

Bilinear Maps and Forms

ย Bilinearย maps

Definition 2.1.1 (Bilinear maps)

Let E, F and G be three arbitrary vector spaces over K.

Aย bilinearย mapย ฮฆย fromย E F into G is a mapping ฮฆย :ย E F G satisfying the following two conditionsย :

  • ฮฆ( ฮฑ1x1+ ฮฑ2x2, y) ย = ย ฮฑ1ฮฆ(x1ย , y) + ฮฑ2ฮฆ(x2ย ,ย y) for all x1, x2ย โˆˆย E, y โˆˆ F and ฮฑ1, ฮฑ2ย โˆˆย K.
  • ฮฆ( x, ฮฑ1y1+ฮฑ2y2) = ย ฮฑ1ฮฆ(x, y1) +ย ฮฑ2ฮฆ(x,ย y2) forย allย xย โˆˆย E,ย y1,ย y2ย โˆˆ

F and ฮฑ1, ฮฑ2ย โˆˆ K.

This means that ฮฆ is separately linear with respect to each of its two argu- ments (variables).

When E = F , a bilinear map from E2ย =ย E E into G is called aย G-valued

bilinear map on E.

Advertisements

Remark 2.1.2

Note that the above two conditions that define the bilinearity of ฮฆ are also respectively equivalent to the following :

ฮฆ( x1+ ฮฑx2, y) = ย ฮฆ(x1ย , y) + ฮฑฮฆ(x2ย ,ย y) for all x1, x2ย โˆˆ E, y โˆˆย F and ฮฑ โˆˆ K.

ฮฆ( x, y1+ ฮฑy2) ย = ย ฮฆ(x, y1) + ย ฮฑฮฆ(x,ย y2) for all x โˆˆ E, y1, y2ย โˆˆย F and ฮฑ โˆˆ K.

Thereย areย manyย interestingย bilinearย mapsย inย theย literature.ย Letโ€™sย usย mention fewย ones.

Examples 2.1.3

  1. Given a ย K-vector space V , the scalar multiplication definedfromย K V

into V as

 

Chapter Three

Quadratic forms

Generalitiesย onย Quadraticย Formsย andย Spaces

Definition 3.1.1

A quadratic form on a K-vector space V , is a functional Q on V such that there exists a bilinear form f on V satisfying

Q(x) = f (x,ย x)ย , โˆ€ x โˆˆ Vย .

First Properties

Proposition 3.1.2 (Polar form of a quadratic form)

For every quadratic form Q on a K-vector space V , there exists a unique symmetric bilinear form ฯ• on V such that

Q(x) ย =ย ฯ•(x, x)ย , โˆ€x โˆˆ Vย .

This unique symmetric bilinear form ฯ• corresponding to Q is called the polar form of Q and can be expressed by

ฯ•(x, y) = ย 1ย ย Q(xย +ย y) Q(x) Q(y) ย , x,ย y Vย .

Consequently, there is a one-to-one correspondance between the class of quadratic forms of a vector space V and the class of symmetric bilinear form on V .

Proof.

Q being a quadratic form, there exists a bilinear form f such that

Q(x) ย =ย f (x,ย x) for all x โˆˆ Vย .

Thusย itย isย notย hardย toย checkย thatย ฯ•ย =ย fโˆ—ย (theย symmetricย partย ofย fย ,ย cf.ย Definition

…) ย is the unique symmetric bilinear form such that Q(x) ย ย = ย ย ฯ•(x, x) forย all

Chapter Four

Applications

ย Quadratic forms and Unconstrained Opti- mization

Proposition 4.1.1 [23],[19]

Let H be a real Hilbert, โ„ฆ be a nonempty open set of H and f : โ„ฆ โ†’ R be a function. Let x0ย โˆˆ โ„ฆ.

  • Iffย ย isย differentiableย atย x0,ย thenย theย derivativeย (inย theย senseย ofย Frยดechet)ย of fย atย x0ย isย aย boundedย linearย functionalย onย Hย andย soย thereย existsย aย unique vectorย denotedย byย โˆ‡fย (x0)ย andย calledย theย gradientย ofย fย atย x0 such thatย fj(x0)(h)ย ย =ย ย (โˆ‡fย (x0),ย h)ย , โˆ€hย โˆˆย Hย .
  • If f is of class C2, then the second order derivative (in the sense of Frยดechet)ofย fย ย atย x0ย isย aย symmetricย boundedย bilinearย formย onย Hย ย andย so thereย existsย aย uniqueย boundedย symmetricย operatorย denotedย byย Hfย (x0) and called the Hessian of f at x0ย suchย that

fjj(x0)(u,ย v)ย ย =ย ย (u,ย Hfย (x0)v)ย , โˆ€u,ย vย โˆˆย Hย .

Theorem 4.1.2 (Optimality Necessary Condition)[3]

Let โ„ฆ be a nonempty open set in Rn, let f be a real-valued function defined on โ„ฆ and suppose that x0ย โˆˆ โ„ฆ is a local minimizer.

If f has first order partial derivatives at x0,ย then

โˆ‚f

(x0) ย =ย 0ย , forย allย iย =ย 1,ย 2,ย .ย .ย .ย ,ย n.

โˆ‚x

Inย particular,ย ifย fย isย differentiableย atย x0,ย thenย x0ย isย aย criticalย pointย ofย fย ; thatย is,

Bibliography

  • Lang, S. : Calculus of several variables. 2 nd Springer New-York. 1987.
  • Jost, J. : Postmodern Analysis. Springer Berlin.
  • Berkovitz,D.ย :ย Convexityย andย Optimizationย inย Rn.ย Johnย Wileyย &ย Sons, Inc.ย 2001.
  • Pfister, A. : Quadratic Forms with Applications to AlgebraicGeometry and Cambridge University Press.ย 1995.
  • Gregory,ย :ย Quadraticย Formย Theoryย andย Differentialย Equations.ย Math- ematics in Sciences and Engineering 152. Academic Pressย 1980.
  • Lax, : Functional Analysis. Wiley-Interscience2002.
  • Oโ€™Meara, O.T. : Introduction to Quadratic 3rd Ed. Springer Berlin1973.
  • Simon,ย : Hamiltonians defined as quadratic forms. Comm. Math. Phys. 21. (1971), 192-210.
  • Troutman, L. : Variational Calculus and Optimal Control. Optimiza- tion with elementary convexity. 2nd Ed. Springer1996
  • Simon, B. : A canonical decomposition of quadratic forms with applica- tions to monotone operators. Journal of Functional Analysis 28. (1978) 337-385.

Advertisements

WeCreativez WhatsApp Support
Our customer support team is here to answer your questions. Ask us anything!