Advertisements

Mathematics Project Topics

Development and Analysis of New Iterative Schemes for Solving Nonlinear Equations

Development and Analysis of New Iterative Schemes for Solving Nonlinear Equations

Advertisements

Development and Analysis of New Iterative Schemes for Solving Nonlinear Equations

Chapter One

Aim and objectives

The aim of the study is to develop and analyse new iterative schemes for solving nonlinear equations.

The objectives of the study are

  • To review iterative schemes between 1998 and 2012 which ย have ย been developed from Adomian decomposition method, Homotopy perturbation method and variants of Newton-Raphsonโ€™s method for solving nonlinear
  • To develop new schemes that could compete with previous schemes and probably have further
  • To compare the new schemes with the existing known iterative

CHAPTER TWO

LITERATURE REVIEW

ย Introduction

A numerical method ย for determining zeroes of a ย functional equation, ย f ( x) = 0 ย is ย generally an iterativeย methodย thatย willย convergeย toย zeroย ofย theย function, ย fย (x)ย . ย Itย isย simplyย aย methodย which

produces an approximate rather than exact solution. As one ย would presume, ย each ย algorithm has its advantages and disadvantages and therefore selecting the right algorithm for a given problem is never easy. Various methods for solving one variable nonlinear equations are presented in the literature. Probably the easiest numerical method for solving a nonlinear equation is the Newton (Newton-Raphson) method as already stated in chapter 1. This method have local convergent and will converge to complex zeros only if the initial guess is complex. However, it can be suitably modified to compute zeros of complex polynomials and transcendental equations. When Newton’s method does converge, ย the ย convergence ย is quadratic, ie the order of convergence isย two.

The Newton-Raphson algorithm is derived from Taylor series expansion ย of ย nonlinear ย equation. The higher order terms (second order and higher order derivatives of the series) are neglected assuming that the initial guess for the iterative process is closer to ย the ย solution. Hence the equation for Newton- Raphson method is one of the reduced forms of Taylor series expansion. The Newton-Raphson method is an iterative process for solving other non-linear equations. In the iterative process, the first order derivative of the non-linear equation is calculated at an initial guess of the variables for the first iteration. The change in variables is then calculated by solving linear equations that contain the first order derivative and input vector. The change in variable is used to update the variables in each iteration. The updated variables are used in successive iteration, Ortega and Rheinboldt (1970) and are given as follows:

x =ย x

f(xnย )

which is the Newton-Raphson method, where

x is the new iterateย and

Advertisements

n+1

n fย ยข(xย ย )

n+1

xn is the previous one.

Generalizations of Newtonโ€™s method

Several researchers generalized this method and offered methods which suggest convergence with higher orders in comparison with Newtonโ€™s method. The following works are variants of Newton-Raphson method.

Jisheng et al. (2006) presented a new modification of Newtonโ€™s method for solving non-linear equations. Analysis of convergence showed that the new method is cubically convergent. Per iteration, the new method requires two evaluations of the ย function and ย one evaluation of its ย first derivative. Thus, the new method is preferable if the computational costs of the first derivative are equal or more than those of the function itself. Its practical utility was demonstrated by numerical examples. Jisheng et al. scheme is asย follows:

 

CHAPTER THREE

CONSTRUCTION OF THE NEW SCHEMES

Introduction

In this section we construct two new methods for solving nonlinear algebraic and transcendental equations, f (x)ย =ย 0.

As mentioned earlier, there is no general methods for finding solutions of nonlinear equations. Researchers are continuously trying to develop easy methods to accurately and efficiently solve problems of nonlinear ย equations. ย The ย new ย schemes we have developed give ย results ย faster ย than the Adomianโ€™s ย decomposition method ย and equally or faster than other methods derived from Adomianโ€™s and other methods. The convergences of the new schemes are proved to be of cubic order. Several examples are presented and the new schemes are used in solving the examples. ย The ย examples ย are ย also solved with other existing methods, namely Abbasbanyโ€™s, Adomian decomposition method, Basto et al. and Newton-Raphson method, which showed the accuracy and fast convergence of these new schemes. With the assumption that

f ยขย ยปย 1, the schemes obviously are free of

f ยข

second derivative and this reduces the computational cost. This assumption is in particular true for the function

e xย and some functions such as

x3ย +ย 4xย 2ย +ย 8xย +ย 8ย atย xย =ย –ย 2ย ,

x3ย –ย 6x –ย 4

at x =ย -0.732

andย 3xย –ย lnย xย –ย 16

at x = -0.434 , see appendix. Of course there are other situations where the assumption is far away from being true.

The schemes start with an initial guess and then generate a sequence of approximations which improve the solution of a problem at each step.

ย The present work

Suppose ย we ย consider ย the ย nonlinear ย equation f (x) =ย 0 , ย such that ย aย is ย a root of the equation and ย ย f ย ย is a continuous function on an interval containing ย a. ย For the new ย scheme 1, ย we ย start

from Taylorโ€™s series around x and truncate the series after the third term, while for the new scheme 2, we truncate after the fourth term of the series. Assuming that ย the ย initial guess for ย the iterative process is closer to the solution, then we apply ADM. The ย ADM ย involves ย breaking the given equation into linear and ย nonlinear parts. The linear operator representing ย ย the linear portion of the equation is inverted and the inverse operator is then applied to the nonlinear part. The nonlinear part is decomposed into a series of Adomian polynomials. This method gives a solution in the form of a series whose terms are determined by a recursive relationship ย using ย these ย Adomian ย polynomials. ย To ย explain ย clearly ย the ย Adomian ย approach, consider the equation

Fy =ย f

where F is a nonlinear differential operator involving both y and ย f are ย functions ย of ย t . Rewriting the equation weย get

CHAPTER FOUR

ANALYSIS OF RESULTS

ย Introduction

We present some numerical examples to illustrate the efficiency and the accuracy of the new developed iterative methods for solving problems of nonlinear algebraic equations. To demonstrate the performance of the new methods, we solved thirty examples ย of ย different nature. As mentioned earlier, the methods used for comparison with the new ย developed ย iterative methods are Newton-Raphson method, Abbasbanby, Basto et al. ย and ย Adomian method. The iterative methods for this class of equations will require knowledge ย of initial ย guess for desired roots of equations. Adomian method was used to find ย the ย initial ย point x0 . The comparison was carried out in terms of the number of iterations obtained ย from ย the ย different methods used, using one way analysis of variance (ANOVA). In each case, the comparison was done only for those methods which converge for the particular numerical example. Note also that methods such as the Karthikeyan (2010) method did not converge for most of the 30 problems and so it was not used in the comparison. Similarly, other methods were not used in the comparison for one reason or another. In all cases, tolerance level for the error was taken as e =ย 107for a method to converge.

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATIONS

ย Summary

Determining the zeroes of nonlinear function is not always direct. It generally takes the form ofย constructingย oneย orย severalย sequencesย ย {xnย }ย ofย complexย (orย pureย real)ย numbersย supposedย to

converge to a zero of the function. Iterative method developed ย should ย give approximations to all ย roots ย of ย a ย functional ย equation, ย Traub ย (1964). ย Many ย iterative ย methods ย developed ย will converge only if the starting value x0 is sufficiently close to a zero of the equation. These are said to be locally convergent. Iterative methods that do not require a sufficiently close starting value are globally convergent. Generally, iterative methods with high order of convergence, converges more rapidly than that with a lower order. In this study, we ย have ย developed ย two ย new iterative methods which converge locally and whose order of convergence is three. The study is summarisedย below.

In this study we present two new iterative schemes for solving nonlinear equations of the form

f (x) = 0. We started by discussing on the motivation for the study as well as the actual problem studied. We also discussed aims and objectives of the study. Basic definition and theorems which will be helpful throughout our study were then presented. In the literature we discussed the basic concept of iterative methods regarding roots of ย nonlinear ย equations. Various methods which were developed by several researchers such as the Newton-Raphson method and it variants, Adomian approach and some of the iterative methods developed based on the Adomian method, as far back from 1998 to the most recent of ย 2012 ย were ย also ย presented. Our two new schemes for solving nonlinear equations were then presented. Later 30 different examples of different nature were presented and the two new schemes applied on the examples to determine the number of iterations to reach solutions byย the schemes.

Some existing iterative methods namely Adomian method, Abbasbandy, Basto et al. and Newton-Raphsonโ€™s method were also applied to ย solve these examples and record ย the number ย of iterations. We then carried out one way analysis of variance test (ANOVA) to make comparison between our schemes and the other iterative methodsย used.

Conclusion

The number of iterations to get a solution using the two new schemes for the 30 examples is generally accommodating. It was noted that the two new ย schemes ย perform equally or better than some of the good existing methods in solving both ย algebraic ย and ย transcendental equations. The results from ANOVA show that there is significant difference between the numbers of iterations obtained for the different methods. The results show that Newton- Raphson method and New scheme 1 have more advantage with a ย maximum ย of ย seven ย iterations each, while new scheme 2 has nine. Basto ย et al. and ย Abbasbany have equal number of thirteen iterations each. The Adomian has sixteen iterations. ย This ย shows ย clearly that ย the newย schemesย 1ย andย 2ย performย equallyย betterย andย asย efficientlyย asย theย bestย existingย methods.

Recommendations

At the end of this study we come up with the following recommendations:

Further studies with more examples should be carried out to make definite conclusions on the results

As we used the approximation fยข

f ยข ย 1, further studies could be carried out using other ratios

f ยขย ยปย c f ยข

(where c is any constant) to obtain other schemes which could be good as well.

  • Further studies could be carried out on the two new schemes developed to see whether they could be applied in solving complex

References

  • Abbas bandy. S. (2003). Improving Newtonโ€“Raphson method for nonlinear equations by modified Adomian decomposition method Applied Mathematics ย and ย Computations 145 887โ€“893.
  • Abbasbandy. S. (2005). Extended Newtons method for a system of nonlinear equations by modified Adomian decomposition method. Applied Mathematics and ย Computations 170 648 โ€“ 656.
  • Adomian, G. (1984). A global method for solutions of complex systems. Math Model, 5, 521-568.
  • Adomian. G and Rach. R, (1985), On Solution of Algebraic Equations By the Decomposition Method, Journal of Mathematical Analysis and Applications 105, 141-166
  • Adomian, G. (1986). Nonlinear Stochastic Operator Equations, Academic Press, Orlando, Florida.
  • Adomian, G. (1988). A review of the Decomposition Method in Applied Mathematics. J. ย Math. Anal. Appl., 135,ย 501-544.
  • Awawdeh, F (2010) On new iterative method for solving systems of nonlinear equations. Numerical Algorithms 54 (3), 395-409
  • Basto. M., Semiao. V., Calheiros, F. L. (2006). A new iterative method to compute nonlinear equations. Applied Mathematics and Computations 173 468 โ€“ 483.
  • Biazar, J., Babolian, E. and Islam, R. (2004). Solution of the system of ordinary differential equations by Adomian decomposition method. Applied Mathematicsย andย Computations 147 713ย โ€“719
  • Boyd, S., Xiao, L. and Mutapcic, A. (2003). Notes on Decomposition Methods, Stanford University, Stanford.
  • Burden, R. L. and Faires, J. D. (2011). Numerical Analysis, Ninth Edition Brooks/Cole, California.
  • Chi, C. and Feng, G. (2008). Few Numerical Methods for Solving Nonlinear Equations International Mathematical Forum, 3 (29), 1437 โ€“ 1443.
  • Chun, C. (2005). ย Iterative ย methods ย improving ย Newtonโ€™s ย method ย byย decomposition ย method. Applied Mathematics and Computations 50 1559ย โ€“1568.
  • Darvishi, M.T. and Barati, A. (2006). Super cubic iterative methods to solve systems of nonlinear equations, Appl. Math. Comput. 10 1016.
  • Feng, J. (2009). A New Two- Step method for Solving Nonlinear Equations, International Journal of Nonlinear Science 8 (1) 40-44.
  • Gupta. C. Malik, A. K, Kumar, V, (2009), Advanced Mathematics, New Age International Limited 4835/24, Ansari Road, Daryaganj, New Delhi.

Advertisements

WeCreativez WhatsApp Support
Our customer support team is here to answer your questions. Ask us anything!