Advertisements

Mathematics Project Topics

Integration in Lattice Spaces

Integration in Lattice Spaces

Advertisements

Integration in Lattice Spaces

Chapter One

PREAMBLE OF THE STUDY

ย Riemann-Stieltjesย Integration

Definition of the Riemann-Stieltjes integral on a compact set

Consider an arbitrary function f : [a, b] โ†’ R.

Theย Riemann-Stieltjesย integralย ofย fย onย [a,ย b]ย associatedย withย Fย ,ย ifย itย exists, is denotedย by:

b

Iย = fย (x)ย dFย (x)

a

ย In establishing the existence of the Riemann-Stieltjes integral of a func- tion, we need the function to be bounded.

Next, we define the Riemann-Stieltjes sums. To do so, for each n โ‰ฅ 1, we divide [a, b] into l(n) sub-intervals (l โ‰ฅ 1).

Let ฯ€nย be a subdivision of [a, b] that divides[a, b] into l(n) sub-intervals. So,

]a, b] =

l(n)โˆ’1

Advertisements

]xi,n, xi+1,n],

i=0

where a = x0,nย < x1,nย < … < xl(n),nย = b.

CHAPTER TWO

Integration with respect to a measure on R : aย summary

In this part, Considering a measure space (โ„ฆ, A, m) we are concerned with recalling the steps of the construction of the integral of a real-valued measurableย functionย fย ย :ย (โ„ฆ,ย A)ย โ†’ย Rยฏ

with respect to a measure, denoted by:

โˆซ f dm = โˆซ

fย (ฯ‰) dm(ฯ‰) =

โ„ฆ

fย (ฯ‰) m(dฯ‰)

Alongย theย document,ย byย โ€Theย Real-valuedย Mappingย Modernย Integralsย (RVM- MI)โ€, we mean the integrals of real-valued measurableย functions.

The construction

STEPย 1M:ย Definitionย ofย theย integralย forย aย non-negativeย elementary funtion fย .

Let,

p

f =

i=1

ฮฑi1Aiย ย ย ย ย (pย โ‰ฅย 1,ย ย ย ฮฑiย โˆˆ

R+, Aiย โˆˆ A, A1ย + A2ย + + Apย = โ„ฆ) be a non-negative elementary function.

The integral of f with respect to m is defined by:

(2.1.1)

โˆซ f dmย =

ฮฃi=1

ฮฑim(Ai)

Remarkย 2.1.

  • (Convention)Inย definitionย (1.1),ย theย productย ฮฑim(Ai)ย isย zeroย when- everย ฮฑiย =ย 0,ย evenย ifย m(Ai)ย =ย +โˆž.
  • Theclassย ofย real-valuedย elementaryย functionsย isย denotedย byย E(โ„ฆ,ย A,ย R) andย E+(โ„ฆ,ย A,ย R)ย standsย forย theย subclassย ofย non-negativeย functionsย of E(โ„ฆ,ย A, R).
  • Asanย elementaryย function,ย fย hasย variousย expressions,ย however,ย Definitionย (1.1)ย isย coherentย (i.e,ย fย dmย doesย notย dependย onย oneย partic- ular expression ofย f).
  • In Definition (1.1) we are using an expression of f in which the coefficientฮฑiย areย disjoint,ย calledย canonicalย representationย ofย f.
  • f is well defined,

In fact, for ฯ‰ โˆˆ โ„ฆ, โˆƒ !i0ย : ฯ‰ โˆˆ Ai0 . So fย (ฯ‰) = ฮฑi0 . Moreover, since the expression of f is the canonical one, ฮฑiย is unique.

 

CHAPTERย  THREE

Integration with respect to a measure on Banach spaces in general

Inย thisย part,ย weย areย goingย toย constructย anย integralย ofย functionsย withย values inย aย Banachย spaceย (E,ย +,ย โˆ—,ย ว.วE)ย overย R.

The construction will consist of repeating Step 1M (from the constructionย  ofย theย integralย ofย Real-valuedย mappings)ย andย definingย aย newย stepย toย replace both Step 2M and Stepย 3M.

Inย fact,ย weย areย replacingย Stepย 2Mย ansย Stepย 3Mย byย oneย newย stepย because theyย requireย anย orderย thatย Eย needย notย toย have.ย Moreover,ย forย anย E-valued functionย fย ,ย weย areย notย certainย ofย gettingย aย sequenceย ofย elementaryย func- tionsย thatย convergeย toย fย .

Remarkย 3.1.ย :ย ย Hereย weย areย consideringย boundedย measureย inย theย con- structionย ofย theย integral,ย unlessย weย haveย correspondingย notionsย ofย infinity.

ย The construction of theย integral

We are going to construct the Bochner integral of a measurable function

f : (โ„ฆ, A, m) โ†’ E in two steps.

CHAPTER FOUR

Integration of mappings with respect to a measure on lattice spaces

In this part we are going to discuss the construction of the Bochner in- tegral in Ordered vector spaces. This part is just an introductory part to Integration in Lattice spaces.

ย Another view on the construction of the Bochnerย integral

Ordered Banach spaces are Banach spaces by definition, so in this setion we are just recalling the construction done in in chapter3, we will also recall some of the properties of the Bochner integral.

Let us recall the construction of the Bochner integral of functions with values in Banach spaces.

Considerย theย measureย space(โ„ฆ,ย A,ย m)ย withย mย aย boundedย measure. Considerย theย Banachย spaceย (E,ย +,ย โˆ—,ย ว.วE)ย overย R

We constructed the Bochner integral of a measurable function f : (โ„ฆ, A, m) โ†’

E in two steps.

CHAPTER FIVE

Conclusion and Perspectives

Using the knowledge of Measure Theory, the integration of real-valued measurable mappings can be extended to an integration of measurable mappings with values in Banach spaces, called Bochner Integration.

On R the Bochner integral and the Modern Integral coincide when using bounded measure.

We have been able to establish limit theorems for Banach-valued mea- surable mappings and we also establish an important result which is the Dominated Convergence theorem on Banach spaces in general.

Inย fact,ย theย integrationย inย linearย spacesย goesย backย toBochner(1933),Dunford(1936a),Dunford(1936b),Birkoff(1935),Birkoff(1937).

But these works are summarized inPettis(1938) whose paper is consid- ered as the seminal introduction to vector valued integration. Currently, the topic of integration in Banach spaces, locally convex spaces and in other abstract spaces is very popular, and this thesis is part of this trend.

ย CONCLUSION AND PERSPECTIVE

Moreover, it is important to emphasize on the fact that this thesis fully discussed the notion of Bochner integration in general Banach Spaces; and also extended some well-know theorems about real-valued functions toย functionsย withย valuesย inย Banachย spaces.ย Also,ย sinceย theย lastย chapterย was justย anย introductoryย partย toย integrationย inย Latticeย spaces,ย Weย discussedย the notion of ordered Banach spaces and gave the properties on the Bochner integral on Banach Latticeย spaces.

As perspectives, this thesis can be more complete by discussing in depth Bochner integration in Lattice spaces and Locally convex spaces. Random set integration on Banach spaces using Bochner integrals and applications is an interesting research topic after reading this thesis that gives us a good idea of Bochner integration.

Bibliography

  • Birkoff G. (1937). Moore-Smith convernvence in general topology, Annalsย of Mathematics, (2), Vol. 38, pp 33-57
  • Birkoffย G.(1935).ย Integrationย ofย functionsย withย valuesย inย aย Banachย spaces.ย Transactionsย ofย theย Americanย Mathematicalย Society.ย Volย 28,ย pp.ย 357-378ย Bochnerย S.ย (1933).ย Integrationย vonย Funktionen,ย derenย dieย Elementeย einsesย Vektorraหย umesย sind.ย Funfamentaย Mathematicae,ย Volย 20ย (1993),ย ppย 262-
  • Dunfordย N.ย Integrationย ofย vector-valuedย functions.ย Bulletinย ofย Mathematicalย Society, abstract,ย 43-1-21
  • Dunford N.(1936) Integration and liear operations. Transactions of the American Mathematical Society, Vol 40, pp. 474-494
  • Eduard Yu. Emelyanov (2013). Note on Archimedean property in orderedย vector spaces. arXiv: 1309.2903v1
  • Lo, G.S.(2018). Measure Theory ย and ย Integration ย by ย and ย for ย the learner. SPAS Editions. Saint-Louis, Calgary, Abuja. Doi : http://dx.doi.org/10.16929/sbs/2016.0005, ISBN :ย 978-2-9559183-5- 7.

Advertisements

WeCreativez WhatsApp Support
Our customer support team is here to answer your questions. Ask us anything!