Advertisements

Mathematics Project Topics

Iterative Algorithms for Single-valued and Multi-valued Nonexpansive-type Mappings in Real Lebesgue Spaces

Iterative Algorithms for Single-valued and Multi-valued Nonexpansive-type Mappings in Real Lebesgue Spaces

Advertisements

Iterative Algorithms for Single-valued and Multi-valued Nonexpansive-type Mappings in Real Lebesgue Spaces

Chapter One

PREAMBLE TO THE STUDY

Fixedย Pointย Theoryย isย concernedย withย solutionsย ofย theย equation

xย =ย Tx (1.0.1)

where T is a (possibly) nonlinear operator defined on a metric space. Any xย that solves (1.0.1) is called a fixed point of T and the collection of all suchย elements is denoted by F (T ). ย ย For a multi-valued mapping T ย : ย X ย ย ย ย ย 2X, aย fixedย pointย ofย Tย isย anyย xย inย Xย suchย thatย xย Tx.

Fixed Point Theory is inarguably the most powerful and effective toolsย used in modern nonlinear analysis today. It is still an area of current intensiveย research as it has vast applicability in establishing existence and uniqueness ofย solutions of diverse mathematical models like solutions to optimization prob-ย lems, variational analysis, and ordinary differential equations.ย These modelsย represent various phenomena arising in different fields, such as steady stateย temperature distribution, neutron transport theory, economic theories, chem-ย ical equations, optimal control of systems, models for population, epidemicsย andย flowย ofย fluids.

CHAPTER TWO

Theoretical Framework

In this chapter, ย we aim to highlight some definitions on which the problemsย are formulated and introduce some concepts and ideas used in the rest of theย chapters.ย Thisย willย includeย anย overviewย ofย theย geometryย ofย someย Banachย spacesย andย someย wellย knownย iterativeย methodsย forย singleย valuedย andย multivaluedย pseu-ย docontractiveย mappings.

Notionsย andย Definitions

Unless otherwise specified, X represents a Banach space with normย . . Theย dual space Xโˆ—ย of X is the Banach space of all bounded linear functionals onย X.ย Itย isย endowedย withย theย norm

xโˆ—ย ย Xโˆ—ย ย :=ย ย supย ย ย x,ย xโˆ—ย ย ,

วxว=1

where โŸจ., .โŸฉ ย represent the pairing between the elements of X ย and Xโˆ—. ย Givenย any sequence {xn} in X, we take xnย โ†’ xโˆ—ย to mean {xn} converges stronglyย toย xโˆ—ย andย xnย ~ย xโˆ—ย toย meanย thatย {xn}ย convergesย weaklyย toย xโˆ—.ย Theย setย ofย realย numbersย includingย +โˆžย isย representedย byย Rยฏ

Advertisements

ย Someย Wellย knownย Definitions

Definition 2.1.1 A mapping T : Xย X is called Lย Lipschitzian if thereย existsย Lย >ย 0ย suchย that

วTxย โˆ’ย Tyวย โ‰คย Lวxย โˆ’ย yว, ย ย โˆ€x,ย y,ย โˆˆย X. (2.1.1)

Remark 2.1.1 If L = 1 in the inequality (2.1.1), the mapping is called non-ย expansive and if L < 1, it is called a strict contraction. It is well known thatย Fย (Tย )ย isย closedย andย convexย wheneverย Tย isย nonexpansive.

Definition 2.1.2 A mapping T : Xย X is pseudocontractive in the termi-ย nologyย ofย Browderย andย Petryshynย [23]ย if

วxย โˆ’ย yวย โ‰ค ว(xย โˆ’ย y)ย +ย r[(xย โˆ’ย Tx)ย โˆ’ย (yย โˆ’ย Ty)]ว, ย โˆ€x,ย yย โˆˆย X, ย rย >ย 0. (2.1.2)

Remark:ย By the result of Kato [62], stated in Lemma (2.1.1) this is equivalentย to

โŸจ(Iย โˆ’ย Tย )xย โˆ’ย (Iย โˆ’ย Tย )y,ย j(xย โˆ’ย y)โŸฉย โ‰ฅย 0.

Thus,ย aย mappingย Tย isย pseudocontractiveย ifย andย onlyย ifย theย theย complementaryย operatorย Aย :=ย I Tย isย accretive.

Aย wellย knownย properย subclassย ofย theย classย ofย pseudocontractiveย mappingsย isย theย classย ofย strictlyย pseudocontractiveย mapping.

Definitionย 2.1.3ย Givenย aย realย Hilbertย spaceย Hย andย aย closedย convexย subsetย K

ofย H,ย letย Tย :ย Kย โ†’ย Kย beย aย mapping.ย Thenย Tย isย saidย toย be

 

CHAPTER THREE

Contributionsย onย Iterativeย Algorithmsย forย Someย Single-valuedย Pseudocontractive-typeย Mappings

Mostย importantย iterationย proceduresย forย singleย valuedย mappingsย currentlyย inย theย literatureย [16],ย canย beย summarisedย asย follows:

xn+1=ย Txn, ย nย โ‰ฅย 0 1890ย Picard

โ‡‘ย ฮปย =ย 1

  • xn+1=ย 2ย (xnย +ย Txn),ย nย โ‰ฅย 0ย โ‰ฅย 0 1955ย Krasnoselski

1

โ‡‘ย ฮปย =ย 2

xn+1=ย (1ย โˆ’ย ฮป)xnย +ย ฮปTxn,ย nย โ‰ฅย 0,ย 0ย โ‰คย ฮปย โ‰คย 1,ย 1957ย (Krasnoselski-)Shaeffer

โ‡‘ย anย = ฮป(const.)

(4)ย xn+1ย =ย (1ย โˆ’ย an)xnย +ย anTxn,ย nย โ‰ฅย 0,ย anย โˆˆย [0,ย 1],

limย anย =ย 0, anย = 1953ย Mann

nโ†’โˆž

โ‡‘ย bnย =ย 0

(5) ย xn+1ย =ย (1ย โˆ’ย an)xnย +ย anTย [(1ย โˆ’ย bn)xnย +ย bnTxn],ย nย โ‰ฅย 0,ย 0ย โ‰คย anย โ‰คย bnย โ‰ค ย 1,

limย bnย =ย 0,

nโ†’

anbnย =ย โˆž 1974ย Ishikawa

n=0

Thereย isย aย needย forย anย iterativeย procedureย thatย fillsย theย gapย betweenย (4)ย and

(5)ย aboveย inย theย senseย thatย hereย anย =ย bnย =ย ฮปย simplyย forย someย ฮป (0, 1).ย Inย thisย chapter,ย weย stateย aย theoremย inย thisย regardย andย demonstrateย howย suc

CHAPTER FOUR

Contributions on Iterative Algorithms for a General Class of Multivalued Strictly Pseudocontractive mappings In this chapter we will survey some techniques for approximating fixed pointsย of a more general class of multivalued pseudocontractive mappings which weย willย defineย shortly.

First, we recall the single valued definition of strictly pseudocontractive map-ย pingย dueย toย Browderย andย Petryshinย [23]ย asย follows:

CHAPTER FIVE

Contributionย onย Countableย Familyย ofย Multi-valuedย Strictly

Pseudocontractiveย Mappings

In this Chapter, we discuss the extension of the main theorem of the lastย chapter to finite family and then countable family of generalized kย strictlyย pseudocontractiveย multivaluedย mappingsย inย Hilbertย spaces.

The extension of the main theorem of the last chapter to a finite family is quiteย straightย forward.ย Itย makesย useย ofย theย followingย identityย validย inย Hilbertย spaces.

Lemmaย 5.0.5ย ([36])ย Let Hย be aย real Hilbertย spaceย and letย {xi,ย iย =ย 1,ย 2,ย …,ย m}ย โІ

CHAPTER SIX

Contributionย onย Iterativeย Methodย forย Multivaluedย Temperedย Lipschitzย Pseudocontractiveย mappings

Introduction

In this section, we will improve on the algorithm of Chidume and Okpala and develop an iterative algorithm for a much larger class of a lipschitzpseudocontractive mapping. We will show that our iterative sequence is an ap-ย proximating fixed point sequence for the mapping. Furthermore, under someย mild assumption like hemicompact (or, in particular, compact), we will proveย strongย convergenceย ofย the

We will demonstrate with examples that our theorems have some edge overย other results like those of Chidume et al. [35], Chidume and Ezeora [36], Pa-ย nyanak [88], Song and Wang [100], among others. It also complement severalย knownย resultsย inย theย literature.

Fewย iterativeย algorithmsย haveย beenย developedย forย singleย valuedย Lipschitzย pseudocntractive-typeย mappingsย inย realย Hilbertย spaces. However,ย tillย now,ย thereย isย noย knownย algorithmย thatย haveย beenย developedย forย theย Multivaluedย analogue.ย Itย isย natural,ย therefore,ย forย usย toย tryย toย developย aย theoryย forย theย multi-valuedย analoguesย ofย theseย mappings.ย Thisย isย theย purposeย ofย thisย Chap-ย ter.ย Moreย precisely,ย weย proposeย aย theoryย forย theย classย ofย temperedย Lipschitzย pseudocontractive mappings as a multi valued analogue for the class of Lips- chitchz pseudocontractive mappings.

Bibliography

  • Abbas, S. H. Khan, A. R. Khan, and R. P. Agarwal, โ€œCommon fixedpoints of two multi-valued nonexpansive mappings by one step iterativeย schemeโ€,ย Appliedย Mathematicsย Letters,ย Vol.ย 24,ย no.2,ย (2011)ย pp.ย 97-102.
  • Alber,ย โ€œMetricย andย generalizedย projectionย operatorsย inย Banachย spaces:ย properties and applications”. In Theory and Applications of Nonlinearย Operatorsย ofย Accretiveย andย Monotoneย Typeย (A.ย G.ย Kartsatos,ย Ed.),ย Marcelย Dekker,ย Newย Yorkย (1996),ย pp.ย 15-50.
  • I. Alber and S. Reich, โ€œAn iterative method for solving a class ofnonlinear operator equations in Banach spaces”, Panamer. Math. J., 4(2)ย (1994),ย 39-54.
  • Alber and S, Guerre-Delabriere, โ€œOn the projection methods for fixedpointย problems”,ย Analysisย (Munich),ย vol.ย 21ย (2001),ย no.ย 1,ย pp.ย 17-39.
  • Alberย andย I.ย Ryazantseva,โ€œย Nonlinearย Illย Posedย Problemsย ofย Monotoneย Type”,ย Springer,ย London,ย UK,ย (2006).
  • Alber Y. and Butnariu D. โ€œConvergence of Bregman projection meth-odsย forย solvingย consistentย convexย feasibilityย problemsย inย reflexiveย Banachย spaces”ย J.ย Optim.ย Theoryย Appl.ย 92ย (1997)ย 33-61.
  • Alberย andย S,ย Guerre-Delabriere,ย โ€œPrinciplesย ofย weaklyย contractiveย mapsย inย Hilbertย spaces”ย inย Newย resultsย inย Operatorย Theoryย andย Itsย Applications,
  • Gohbergandย ย Lyubich,ย Eds,ย volย 98ย ofย Operatorย Theory:ย Advancesย andย Applications,ย pp.ย 7-22,ย Birkhauser,ย Basel,ย Switzerland(1997).
  • A. Alghamdi, N. Shahzad, and H. Zegeye, โ€œStrong Convergence The-orems for Quasi-Bregman Nonexpansive Mappings in Reflexive Banachย Spaces”,ย Journalย ofย Appliedย Mathematicsย Volย 2014,(2014)ย Articleย IDย 58068
  • Aoyama, F. Kohsaka, and W. Takahashi, โ€œProximal point methods formonotone operators in Banach spacesโ€, Taiwanese Journal of Mathemat-ย ics,ย vol.ย 15,ย no.ย 1,(2011)ย pp.ย 259-281.
  • P. Aubin,โ€œMathematical Methods of Game and Economic Theory”,ย Studies in Mathematics and its Applications 7. Amsterdam-New York,ย North-Hollandย Publ.ย Co.ย (1979).

Advertisements

WeCreativez WhatsApp Support
Our customer support team is here to answer your questions. Ask us anything!