Lasalle Invariance Principle for Ordinary Differential Equations and Applications
Chapter One
PREAMBLE OF THE STUDY
In this chapter, we focussed on the basic concepts of the ordinary differential equations. Also, weย emphasizedย onย relevantย theroemsย inย ordinaryย differentialย equations.
Definition 1.1.1ย An equation containing only ordinary derivatives of one or more dependent vari-ย ables with respect to a single independent variable is called an ordinary differential equation ODE.ย The order of an ODE is the order of the highest derivative in the equation. ย In symbol, we canย expressย anย n-thย orderย ODEย byย theย form
ย
x(n)ย =ย fย (t,ย x,ย …,ย x(nโ1)) (1.1.1)
Definition 1.1.2 (Autonomous ODE ) When f is time-independent, then (1.1.1) is said to beย anย autonomousย ODE.ย Forย example,
xj(t)ย =ย sin(x(t))
Definitionย 1.1.3ย (Non-autonomousย ODEย )ย Whenย fย isย time-dependent, thenย (1.1.1)ย isย saidย toย beย aย nonย autonomousย ODE.ย Forย example,
ย xj(t)ย =ย (1ย +ย t2)y2(t)
CHAPTER TWO
BASICย THEORYย OFย ORDINARYย DIFFERENTIALย EQUATION
In this chapter we give a broad discussion of the existence and uniqueness of solutions of ordinaryย differentialย equations.ย Weย discussย equilibriumย points,ย stability,ย fundamentalย matrixย andย variationย ofย constantsย formula,ย andย otherย keyย conceptsย ofย dynamicalย systems.ย Weย startย thisย chapterย withย theย followingย definitions;
Definitionsย andย basicย properties
Advertisements
Definition 2.1.1ย Let Iย be an interval containing t0, let f : I ร Rnย โ Rnย be continuous and Lips-ย chitzian with respect to second variable,ย letย x : Iย โ Rnย be continuous,ย then x is a solution of theย followingย ordinaryย differentialย equation
onย I,ย if
xisย aย C1ย –ย functionย onย
xj(t)ย =ย fย (t,ย x(t)), t โ Iย x(t0)ย =ย x0, t0ย โย I
(2.1.1)
xsatisfiesย theย aboveย ODE,ย forย allย tย โ
Theoremย 2.1.2ย [9](Peanoโsย Theorem)ย Letย fย :ย Rย รย Rnย โย Rnย beย continuousย inย aย neighbourhoodย ofย (t0,ย x0)ย thenย thereย existsย aย >ย 0ย suchย thatย theย initialย valueย problem
xjย =ย fย (t,ย x), tย โย R
x(t0)ย =ย x0ย โย Rn.
hasย atย leastย oneย solutionย onย theย intervalย Iย =ย [t0ย โย a,ย t0ย +ย a]ย โย R.
Proofย .ย Defineย theย set
(2.1.2)
Eย =ย C([t0ย โย a,ย t0ย +ย a],ย Rn)
thenย Eย isย aย Banachย spaceย providedย withย theย โย supย โย norm.ย Let
Mย ย =ย maxย วfย (t,ย x)วย ย for Qย =ย {(t,ย x)ย :ย โaย โคย tย โย t0ย โคย a, วxย โย x0วย โคย b}
andย defineย theย setย Aย โย Eย by
Aย :=ย {xย โย Eย :ย supย วx(t)ย โย x0วย โคย b}ย =ย B(x0,ย b)C(I,Rnย ย ย โย E.
Then,ย Aย isย aย closedย subsetย ofย E,ย asย xnย โย Aย impliesย that
lim
nโโ
xnย =ย xย โย A
(thisย followsย fromย theย uniformย convergenceย inย E).ย Also,ย Aย isย convexย (everyย ballย isย convex).ย Thus,ย by the Ascoli-Arzela theorem, A is compact, and A is complete as a closed subset of a completeย metricย spaceย withย theย supย norm.
Also,ย letย Tย :ย Aย โย Eย beย definedย by
(Tx)(t)ย :=ย x0ย +
หย t
fย (s,ย x(s))ds
t0
Let,ย (xn)nโฅ1ย โย A such that xnย โย xย โย Aย withย theย โย supย โย norm,ย then,
xn(t)ย โย x(t) implies supย วxn(s)ย โย x(s)วย โย 0, as nย โย โ.
Therefore,
หย t
วTxn(t)ย โย Tx(t)วย โค วfย (s,ย xn(s))ย โย fย (s,ย x(s))วds
หย t0+a
โคย t0โa
วfย (s,ย xn(s))ย โย fย (s,ย x(s))วd
โคย 2aย supย วfย (s,ย xn(s))ย โย fย (s,ย x(s))ว.
fย isย continuousย onย Iย รย B(x0,ย b)ย impliesย thatย f ย isย uniformlyย continuousย onย Iย รย B(x0,ย b).ย So,ย as
nย โย โ, วTxn(t)ย โย Tx(t)วย โย 0.
Thus,ย Tย isย continuous.ย Letย Tzย โย Tย (A)
หย t
วTz(t)ย โย x0วย =ย ว
หย t
fย (s,ย z(s))dsว
โคย t0
หย t
โคย t0
วfย (s,ย z(s))วds
Mds
หย t0+a
โค Mdsย =ย 2aMย โคย b
t0โa
forย aย smallย enough.ย Hence,ย Tย (A)ย โย A.
Weย lookย forย aย fixedย pointย ofย Tย ,ย thatย is,ย weย wantย toย find
xย โย E ย ย such ย ย that ย ย Txย =ย x.
Aย fixedย pointย ofย Tย solvesย theย IVP(2.1.2),ย andย Tย hasย aย fixedย pointย asย aย consequenceย ofย theย followingย Schauder – Tychonoffโs Theorem (If Tย : X โ X is continuous and if A โ X is a convex compactย subsetย ofย theย normedย linearย spaceย Xย andย Tย (A)ย โย A,ย thenย T ย hasย aย fixedย pointย inย A).
Exampleย 2.1.3ย Consider
Here,ย ย fย (y)ย =ย โ|y(t)|.
yjย = |y(t)|, tย โฅย 0,ย y(0)ย = 0.
Solvingย theย givenย IVP,ย weย haveย that,
t2
y(t)ย =ย โย 4ย , if y(t)ย <ย 0,
y(t)ย =ย 0, if y(t)ย =ย 0,ย t2
y(t)ย =
, if y(t)ย >ย 0.
4
So,ย theย ODEย doesย notย haveย aย uniqueย solution.ย Thisย isย becauseย fย isย notย Lipschitzian.
CHAPTER THREE
CONCLUSION
Theย aimย ofย thisย thesisย isย toย studyย aย longย timeย behaviourย solutionย usingย 3ย approachesย .
The firste is the linearization principle: If it works that fine, but most of cases it does not work well, like we have seen in many examples.
Theย secondย oneย isย theย Lyapunovย functions,ย itย isย theย bestย wayย toย studyย theย asymptoticย behaviourย ofย solutions,ย butย theย constructionย ofย theย Lyapunovย functionsย dependsย onย theย natureย ofย theย ODE.ย Theย thirdย oneย isย basedย onย LaSalleย invarianceย principle,ย itย isย anย interestingย workingย toolย inย dynam-ย icalย systemsย andย controlย theory.
BIBLIOGRAPHY
- Chidume,ย Linearย Functionalย Analysis.ย Ibadanย Universityย Press,ย 2014.
- Cristian,ย C.ย Vidal,ย Theย Chetaevย Theoremย forย Ordinaryย Differenceย Equations.ย Vol.ย 31ย ofย Proyeccionesย Journalย ofย Mathematics,ย 2012,ย 391-402.
- Rowell,ย Computingย theย Matrixย Exponential,ย Theย Cayleyย Hamiltonย Method.ย Massachusettsย Instituteย ofย Technology,ย Departmentย ofย Mechanicalย engineering,ย 2004,ย web.mit.edu/2.151/www/Handouts/CayleyHamilton.pdf
- Abdollahi, StabilityAnalysisย I, Lecture Note on Nonlinear Control,ย Amirkabir University ofย Technology,ย Fallย 2010.
- Birkoff, S.ย MacLane, Aย Surveyย ofย Modernย Algebra, 1996, [email protected]
- Javed,ย Theย Invarianceย Principleย ,ย Lectureย Slidesย onย Nonlinearย Controlย Systems,ย Damodaramย Sanjivayyaย Nationalย Lawย University.
- Lestas,ย Invariantย Setsย andย Stability,ย Nonlinearย andย Predictiveย Control.ย Engineeringย Triposย Partย IIB,ย 2009.
- Ezzinbi,ย Lectureย Noteย onย Metricย Spacesย andย Differentialย Calculus.ย AUST,ย 2018.
- Ezzinbi, ย Lectureย Noteย onย ODEs.ย AUST,ย 2018.
- Kawski,ย Introductionย toย Lyapunovย theory.ย 2009.
- Salman, ย V. ย Borkar, Exponentialย Matrixย andย theirย Properties. Vol. 4 of International Journal of Scientific and Innovative Mathematical Research(IJSIMR), 2016, 53-63, www.arcjournals.org