Mathematics Project Topics

Weak and Strong Convergence of an Iterative Algorithm for Lipschitz Pseudo-contractive Maps in Hilbert Spaces

Weak and Strong Convergence of an Iterative Algorithm for Lipschitz Pseudo-contractive Maps in Hilbert Spaces

Weak and Strong Convergence of an Iterative Algorithm for Lipschitz Pseudo-contractive Maps in Hilbert Spaces

Chapter One

PREAMBLE TO THE STUDY

The contribution of this thesis falls under a branch of mathematics called Functional Analysis. Functional Analysis as an independent mathematical discipline started at the turn of the 19th century and was finally established in 1920’s and 1930’s, on one hand under the influence of the study of specific classes of linear operators-integral operators and integral equations connected with them-and on the other hand under the influence of the purely intrinsic development of modern mathematics with its desire to generalize and thus to clarify the true nature of some regular behaviour. Quantum Mechanics also had a great influence on the development of Functional Analysis, since its basic concepts, for example energy, turned out to be linear operators (which physicists at first rather loosely interpreted as infinite dimensional matrices) on infinite dimensional spaces.

The contribution of this thesis falls under a branch of mathematics called Functional Analysis. Functional Analysis as an independent mathematical discipline started at the turn of the 19th century and was finally established in 1920’s and 1930’s, on one hand under the influence of the study of specific classes of linear operators-integral operators and integral equations connected with them-and on the other hand under the influence of the purely intrinsic development of modern mathematics with its desire to generalize and thus to clarify the true nature of some regular behaviour. Quantum Mechanics also had a great influence on the development of Functional Analysis, since its basic concepts, for example energy, turned out to be linear operators (which physicists at first rather loosely interpreted as infinite dimensional matrices) on infinite dimensional spaces.

Chapter Two

 Preliminaries

In this Chapter we present mostly geometric conditions ensuring that convergence is strong. Most of the properties will be established in the frame work of Hilbert spaces. Although a lot of results can be extended to larger classes of spaces, we will only do so in some specific cases, since our aim is to emphasize unity in terms of tools and approach.

Definitions and Technical Results About Convergent Sequences of Real 

Definition (Strong Convergence)

Let H be a Hilbert space.  We say that {xn} converges (strongly) to x if limn→∞ ǁxn xǁ =

  1. Thisis written limn→∞ xn = 0 or simply xn → x.

Definition (Weak Convergence)

Let  H  be  a  Hilbert  space.   We  say  that  the  sequence  {xn}∞n=0   of  elements  of  a  Hilbert space H converges weakly to x H if there is an x H such that for every f H, limn→∞ f (xn)  =  f (x).   We  call  the  point  x  a  weak  limit  of  the  sequences  {xn}∞n=0   and write xn ~ x.

Proposition 2.1.3 A sequence {xn} in a real Hilbert space H converges weakly to a point

x ∈ H  if and only if lim⟨xn, z⟩ = ⟨x, z⟩  ∀ z ∈ H.

Proof:

Suppose xn ~ x, then f (xn) → f (x)    ∀ f  ∈ H.  Let z ∈ H  be arbitrary (but fixed).

Then define g H  → f  = ঩ or   C  by g(x) = ⟨x, z⟩.  Then g ∈ H, since

g(αx βy) = ⟨αx βy, z⟩ = ⟨αx, z⟩ + ⟨βy, z⟩ = αx, z⟩ + βy, z⟩ = αg(x) + βg(y) Also, | g(x) |=| ⟨x, z⟩ |≤ ǁxǁǁzǁ.  This implies that g  is bounded and ǁgǁ ≤ ǁzǁ.

Since g ∈ H and xn ~ x then g(xn) → g(x)

⇒ ⟨xn, z⟩ → ⟨x, z

⇐) Suppose ⟨xn, z⟩ → ⟨x, z⟩ ∀ z ∈ H  then we prove that xn ~ x.

Let f ∈ H be arbitrary. Then by the Riez Representation Theorem, there exists a unique z ∈ H  such that f (x) = ⟨x, z⟩ ∀ x ∈ H.  Thus f (xn) = ⟨xn, z⟩ and since ⟨xn, z⟩ → ⟨x, z⟩, we have that f (xn) → f (x), which implies that xn ~ x

Definition 2.1.4 A sequence {an} is said to be monotone increasing if an+1 ≥ an for all

n ≥ 1, and monotone decreasing if an+1 ≤ an for n ≥ 1. We say {an} is monotone (or monotonic) if it is of one of these two types.

We now state and prove the following important results concerning sequences of real numbers.

Lemma 2.1.1 [19] Let {an} and {bn} be two sequences of a normed space X and {tn} a sequence of real numbers. If the following conditions

  • 0≤ tn ≤ t < 1 and n=1 tn = ∞,
  • an+1= (1 − tn)an tnbn for all n ≥ 1,

 

Chapter Three

Weak and Strong Convergence of an Iterative Algorithm for Lipschitz Pseudo-Contractive Maps in Hilbert Spaces

  Main Result

In Chapter 2, we presented mostly geometric, conditions ensuring that the convergence is strong.

In this Chapter, we introduce a modified Ishikawa iteration for Lipschitz pseudocontractive map in real Hilbert spaces.

Algorithm 3.1.1 Let H be a real Hilbert space and K be a closed convex subset of H.

Let  T   :  K  → K  be  a  Lipschitz  pseudo-contractive  mapping  such  that  F (T ) ∅.   Let

{αn}, {βn} and {γn} be real sequences in (0, 1). For given x1 ∈ K, let {xn} be generated iteratively by

xn+1 = Pk[(1 − αn − γn)xn γnTyn];

yn = (1 − βn)xn βnTxn, n ≥ 1 (3.0)

Theorem 3.1.2 Let H be a real Hilbert space and K be a closed convex subset of H. Let

T : K K be a L-Lipschitz  pseudo-contractve  mapping  such  that F (T ) the sequences {αn}, {γn}, {βn} ∈ (0, 1) satisfying

(i) βn(1 − αn> γnn ≥ 1 (ii) limn→∞ αn = 0 and Σαn = ∞

∅.   Assume

0< α ≤ γn ≤ βn ≤ β < [

     1 1+L2+1]

for all n ≥ 1. Then the sequence {xn} generated

by (3.0) strongly converges to a fixed point of T .

Proof of Theorem 3.1.2

Since F (T ) /= ∅, we can take p ∈ F (T ).  From (3.0) we have

ǁxn+1 − pǁ  = ǁPk[(1 − αn − γn)xn γnTyn] − pǁ

≤  ǁ(1 − αn − γn)xn γnTyn − pǁ

= ǁ(1 − αn − γn)(xn − p) + γn(Tyn − p) − αnpǁ

≤  ǁ(1 − αn − γn)(xn − p) + γn(Tyn − p

+αnǁpǁ (3.1)

Now consider

ǁ(1 − αn − γn)(xn − p) + γn(Tyn − p)ǁ  =    ǁ(1 − αn)[(1 − γn)(xn − p) + γn(Tyn − p)]

+αn[−γnxn γnTyn]ǁ2

References

  • I. Alber, ”Metric and Generarized Projection Operators in Banach Spaces : prop-erties and applications,” in Theory and Applications of Non linear operators of Accretive and Monotone Type, vol.178 of Lecture Notes in Pure and Applied Math- ematics, pp. 15-50, Marcel Dekker, New York, NY, USA,1996.
  • Asplund, Positivity of Duality Mappings, Bull.Amer. Math. Soc., 73 (1967), 200-203
  • Banach, Sur les Operations Dans Les Emsembles Abstraits et Leur Application Aux Equations Integrals. Fundamenta Mathematicae 3, 133-181 (1922).
  • H. Bauschke, J. Borwein, On Projection Algorithms for Solving Convex Feasibility Problems. SIAM Rev. 38, 367-426 (1996).
  • Berinde, Generalized Contractions and Applications (Romanian), Editura cub press 22, Baiamare, 1997.
  • Berinde, Iterative Approximation of Fixed Points (Springer, Berlin, 2007).
  • Borwein and J.M. Bowein, Fixed Point Iterations for Real Functions, J.Math.Anal.Appl. 157(1991), 112-126.
  • E.Browder, Fixed Point Theorems for Non-compact Mappings in Hilbert Space. Proc. Nat. Acad. Sci. USA 53, 1272-1276 (1965).
WeCreativez WhatsApp Support
Our customer support team is here to answer your questions. Ask us anything!