Science Laboratory Technology Project Topics

Science Equipment Development (Fabrication of Wash Bottles)

Science Equipment Development (Fabrication of Wash Bottles)

Science Equipment Development (Fabrication of Wash Bottles)

Chapter One

Objectives of study

To determine the design and fabrication of bottle washers in bottling companies

CHAPTER TWO

LITERATURE REVIEW

In small scale industries the bottle are washed in the hands so the manpower, money and time are waste to overcome the issues the bottle cleaning machine was created and reduce the size of the machine for small industries as compared to large scale industries.

Paper [1] Temperature is the most critical parameter to ensure the proper cleaning of beverage containers in bottle washer machine. The requirement and importance of temperature control of different treatment zones of bottle washer machine for small scale beverage industry has been discussed. The sample water heating tank has been considered as the treatment zone of the bottle washer machine. The temperature control of the sample water heating tank with VIPA 315-SB PLC using PID control has been discussed and implemented. Two tuning methods for PID control, namely Ziegler Nichols tuning and auto-tuning have been discussed and implemented. The novel approach for implementation of MPC using OPC server and MATLAB as an OPC client has been discussed and implemented for sample water heating tank system.

Paper [2] this paper proposes the design and automation of the economical bottle washer machine for the small scale beverage industry without compromising its control capabilities. The importance and requirement of the bottle washer machine in the beverage industry has been discussed. The design of the proposed bottle washer machine for RGBs (Returnable Glass Bottles) has been created in the Creo software. The different treatment zones and working of the bottle washer machine has been discussed. The bottle washer machine has been automatized using the Siemens S7-317-2-PN/DP PLC (Programmable Logic Controller) and programmed using a ladder diagram in the SIMATIC Manager. The level control for different treatment zones is achieved by means of limit switches and temperature control for different treatment zones is achieved by using Pt1000 RTD, SSR (Solid State Relay) and heater. Paper [3] the enhanced mechatronics system design is based on concurrent Engineering. This process is all about building a machine in virtual environment before constructing in actual hardware. Here we can detect fault at earlier stage by creating animation and emulating it in virtual environment. If we follow the conventional process there is high chance to get faulty result and also have to spend more time and money to finish the project whereas by using concurrent engineering it is more useful to develop the project in more efficient and cost effective way this paper NaOH and such chemicals are used to clean the returnable glass bottles to reuse in beverage packing of glass bottles to reuse in the industries.The machine subjected to two different speeds, 40,000 bottles per hour (BPH) and 46,000 BPH. In this machine we processing the bottle at high speed.

 BOTTLE WASHİNG İN THE BEVERAGE İNDUSTRY

In the beverage industry, washing of RGBs for reuse is a necessary process to produce physically clean and spotless bottles that are also biologically clean to hold the highest consumer confidence and satisfy public health standards. The bottles undergo distinct stages of cleaning and sterilization in the bottle washer: pre-cleaning (pre-rinse, pre-wash) caustic wash, and final rinse. Caustic soda (NaOH) is used as a cleansing agent because it is cheaper, less prone to thermal shock, and is more durable as a germicide than any other alkalis used for washing [3]. Temperature is the most critical parameter to ensure effective cleaning of returnable glass bottles in the washer [7]. According to [4], at a solution temperature of 80 °C, NaOH attacks glass and softens its surface, enables organic matter to dissolve, grease and oil to emulsify, and dirt removed in suspension. The bottle washing process consumes vast quantities of water. Modern bottle washers use 150 – 200 ml per bottle and makeup approximately 50 – 60 % of a plant‟s daily water usage [9].

The pre-cleaning phase is the initial stage of the washing process, where the RGBs turned upside-down so that remnant impurities and residual liquid clinging to the bottom of the bottles fall out. Rough impurities such as dust, sand, cigarette butts, crown corks, rainwater, mineral stains, microbes are deposited in a collection pan and removed via a sieve-belt conveyor located at the spot the bottles are being turned upside-down [3]. Preheating of bottles also takes place in this zone, where a set of private jetting pipe jets both inside and outside of the bottles by recycled water (containing residual heat) from the final rinse zone [6]. Preheating ensures a gradual rise in temperature of the bottles, preventing thermal shock as the bottles enter the hot caustic soaking baths for chemical and thermal cleaning of microbiological contaminants [13].

After pre-cleaning (pre-rinse and pre-wash), the bottles enter the actual washing zone. The washing phase consists of a certain number of caustic solution (soaking) baths depending on the required treatment time. As the bottles get submerged and pass through the soaking baths, chemical destruction of dirt occurs under caustic action at high temperatures (70 to 80 °C).

 

Chapter Three

Research methodology

The PET bottle washing and sterilizing machine is designed to process a set of two (2) 75cl used PET bottles in 10 seconds. The machine consists of the following major components: The shaft, pulleys, belt, bearings, and electric motor, wash brushes, pre-wash/washing and rinsing chambers, sterilizing channel, erection reservoirs and the main frame. The wash brushes are designed to fit into a stainless shaft which is connected to an electric motor via a V–belt and pulley system. During the washing operation, the pre- washed PET bottles are fed into the rotational wash brushes. The electric motor transmits power through the V-belt to the shaft. As the shaft rotates, it actuates the wash brushes, which starts washing the fed bottles. The wash brush shafts bear the bigger pulley so as to reduce the speed of the electric motor to a desired washing speed. The operational process of the machine is shown in a flow diagram of Figure 2.

CHAPTER FOUR

TEST, RESULTS

 Preliminary test

A preliminary test was carried out at the conceptual stage of this work. It was to find a suitable soaking temperature for PET bottles. The test results are shown in Table 1.

Soaking temperature

A pre-wash soaking temperature test was carried out to determine the appropriate temperature by which PET bottles can be washed without deforming them. Table 2 shows results of the test carried out and state of the bottles at various temperatures.

CHAPTER FIVE

DISCUSSION AND CONCLUSION

Discussion

In view of the need to reduce the waste generation of used PET bottles, a machine was designed and fabricated for the purpose of washing and sterilizing reusable PET bottles for reuse. During the course of fabrication a brick wall was encountered involving the rotational wash brushes. The desired design for the wash brushes could not be sourced and so it had to be improvised, using locally available materials. After fabrication and assembling the machine was prepared for testing, the soak and rinse chambers were properly washed and the surrounding environment was cleared of all unsafe objects. The prototype machine was tested and was found to wash event site collected bottles of a set of two (2) in 10 seconds, Dump site collected bottles of a set of two (2) in 35 seconds and drainage system collected bottles of a set of two (2) in 55 seconds.

The fabricated prototype soaking chamber was designed for a batch of twenty four (24) bottles. The chambers were made of stainless steel and the rotating wash brushes were made of plastic bristles wrapped around a stainless steel rod of 5 mm thick. The machine runs on a single phase 0.5 hp electric motor at a speed of 1440 rpm, the speed was further stepped down by pulleys to a wash speed of 470 rpm. The efficiency of the machine is 81.91 % and it washing capacity is 120 bottles per hour.

Conclusion

Post-consumed PET bottles are non-biodegradable waste; they constitute a nuisance in our environment, and they are found littered in all nooks and crannies within our cities in Nigeria. A PET bottle washing and sterilizing machine was therefore designed and fabricated using locally available materials. It was done to recycle used PET bottles at source and reduce it litter in the country. Test results of the prototype machine, showed that used PET bottles can be recycled by simply washing and sterilizing them. The fabricated prototype washes a set of two (2) 75cl used PET bottles in 10 seconds, with an efficiency of

81.91 %. It washing capacity is 120 bottles per hour. This new development reduces the virgin reproduction of PET bottles. Thus, alleviating the menace posed by its litter in the country. Furthermore, it will provide formal and informal economic activity in the collection, sorting, washing, sterilizing and the re-use of PET bottles in Nigeria.

The machine subjected to two different speeds, 40,000 bottles per hour (BPH) and 46,000 BPH. Temperature, NaOH, and additives concentration of the three soaking baths 1, 2, and 3 were within required control ranges. At both speeds, caustic solution baths 1, 2, and 3 had average temperatures of 60 °C, 80 °C and 60 °C, respectively, while average NaOH concentration at 1.99%, 1.81%, and 1.66 % respectively for the three baths. Mix LEG and Mix KTA were used as NaOH additives to aid in soil and label removal. Mix LEG applicable only to NaOH solution bath one while Mix KTA for baths 2 and 3. At both speeds, average Mix LEG concentration was 0.29% in bath one while Mix KTA 55.02% and 54.56 % in baths 2 and 3, respectively. At the average operating speed of 46,000 BPH for returnable glass bottles, 450,095 bottles processed in 24 hours. The empty bottle inspector rejected 8.44 % of the total processed bottles. At the reduced speed of 40,000 BPH, a total of 430,812 bottles processed within 24 hours operation with the EBI rejecting 4.18 % of the total processed bottles. The findings show that at the same temperature, NaOH and additive concentrations, cleaning is more effective when bottles subjected to longer soaking times.

Reference

  • Referencemanual of the Bottle Washer Machine, KHS Machinery  Ltd., 2012.
  • Riikka Juvonen, Vertti Virkajärvi, Outi Priha& Arja Laitila, “Microbiological spoilage and safety risks in non-beer beverages produced in a brewery environment”, Espoo 2011, VTT Tiedotteita – Research Notes
  • Mace,Kenneth  “Microorganisms and sanitation in the carbonated beverage industry.” Proceedings of the Arkansas Academy of Science. Vol. 7. Arkansas Academy of Science, 1955.
  • Ma, Hui-Min, Jun-Yan Wang, and Zheng Ni.”A glass bottle defect detection system without ” Machine Learning and Cybernetics, 2002. Proceedings. 2002 International Conference on. Vol. 2. IEEE, 2002.
  • CausticSoda Solution Handbook, the Dow Chemical Company.\ [6] Ogawa, Masao, and Yutaka  “Recent developments on PC+ PLC based control systems for Beer Brewery Process Automation Applications.” SICE-ICASE, 2006. International Joint Conference. IEEE, 2006.
  • L. Nemerow, “Industrial Water Pollution:Origin, Characteristics and Treatment”, Addison-Wesley Publication Co., Inc., USA, (1978).
  • G.Gajjar, A.I. Patel and R.G. Singh, “Real Time Implementation   of   MPC   in   Bottle Washer Machine for Small Scale Beverage Industry”, Researchgate Publications, Europe, (2017)
  • M.Lowe and W.I. Elkin, “Centenary Review Beer Packaging in Glass and Recent Developments”, Journal of the Institute of Brewing, vol. 92, (1986), pp. 517 –528.